⋮⋮⋮
No.
328376
>>328374Математики собі бюджет витрат на місяць розраховують?
⋮⋮⋮
No.
328380
OP
>>328376Я не розраховую, але треба.
⋮⋮⋮
No.
328381
>>328376Стандартна схема, записавши всі продуктові витрати протягом 3 тижнів, шукаємо де можна оптимізувати, і як оцінкову суму беремо середньоквадратичну від оптимізованої. Враховуємо інфляцію 15% річних (із запасом). Додаємо 5%. 20% від місячного бюджету переводимо в річний. Ось у нас і вийшов такий собі "бюджетик".
Для більш глобального (річного планування) потрібно зробити більше дій.
Примітка: кожен рік робимо додаткові заміри 3-5 тижнів, і робим поправку.
⋮⋮⋮
No.
328384
>>328383Вчишся чи вже вчений?
⋮⋮⋮
No.
328387
>>328385Яка ступінь?
Який університет?
⋮⋮⋮
No.
328389
OP
>>328387Доктор філософії з математики, університет не буду писати.
⋮⋮⋮
No.
328390
кіко пар в тиждень?
⋮⋮⋮
No.
328392
OP
>>328390В мене без викладання позиція.
⋮⋮⋮
No.
328393
>>328374Як вам математика допомогла в житті?
Ось, наприклад, є розділ "Диференційні рівняння". Чи знаходили ви приклад застосування цього предмету в реальному житті (поза роботою)?
⋮⋮⋮
No.
328394
OP
>>328393Знання статистики допомогають читати наукові статті не з математики, а, скажимо, з медицини. Часто підчитую про свої хронічні хвороби і ях їх лікують або, скажимо, про старіння шкіри, або про рак, бо я в групі ризика.
Окрім цього – ні, бо якщо щось моделювати діфурами сідати то треба грунтовно до цього підходити, а нема на таке часу, бажання та й необхідності.
⋮⋮⋮
No.
328395
>>328394Зрозуміло. Живите по принципу "1, 2 та багато".
Чи ні?
>>328380Так...
⋮⋮⋮
No.
328399
>>328374як ви вважаєте, чи не вистачає Кропивачу розділа /math/ ?
⋮⋮⋮
No.
328400
>>328385Як ти взагалі на кропивач потравпив? Ти бачеш який ту люд, УБК - страшна річ. Тікай поки не отупів!
⋮⋮⋮
No.
328401
>>328374> Я експерт з математики,А чим доведеш?
⋮⋮⋮
No.
328402
OP
>>328399Нема сенсу такі спеціальні розділи робити при такому онлайні.
>>328400Давно дуже про його існування знав, та і взагалі слідкую за українським інтернетом, в якому не так і багато місць де люди збираються говорити. Я тут не особливо часто, зараз настрій такий зайти був.
>>328401Конденсована множина – це пучок на про-етальном сайті точки. А ще можу на питання відповідати які погано гугляться, якщо такі будуть.
⋮⋮⋮
No.
328403
>>328374«Це проста математика»
"Перевір"
«Я кружляю навколо науки»
— Про що ми тут говоримо?
«Це проста математика»
"Перевір"
«Я кружляю навколо науки»
— Про що ми тут говоримо?
«Рахуй, рахуй»
"1, 2, 3, 4"
— Про що ми тут говоримо?
⋮⋮⋮
No.
328435
>>328374Зустрівши Гліба Покладія, що би ти йому сказав?
⋮⋮⋮
No.
328592
Маю різницю квадратних поліномів в степені 3/2:
(a x^2 + b x + c)^(3/2) - (u x^2 + v x + c)^{3/2}
Можна це лайно якось скоротити/переписати?
Припустимо, розгорну я куби в поліном 6 степеня. А далі що?
Все одно ж буде різниця коренів. От якби різниця квадратів...
⋮⋮⋮
No.
328593
OP
>>328592Навряд спрощується. А де тобі таке зустрілось?
⋮⋮⋮
No.
328594
>>328593Це не з навчання.
Працюю над алгоритмом 3D сканування і вийшло вивести ось таке.
Тут x це скаляр, який потрібно підібрати аби вираз збігався з правою частиною рівняння (якої тут нема).
Зараз я вирішую це звичайним перебором але думав може вийде вивести символьний розв'язок.
⋮⋮⋮
No.
328616
OP
>>328594В теорії з
(a x^2 + b x + c)^(3/2) - (u x^2 + v x + w)^(3/2) = k
можна виразити x як корінь многочлена 10-ї степені з параметрами a,b,c,u,v,w,k. А потім виразити корінь многочлена 10-ї степені через тета-функції Якобі. Я можу зробити для сміху, але якщо твої многочлени не зовсім довільні а приходять з якоїсь задачі мінімізації або геометрії то скоріш за все відповідь є простішою, ніж те що я отримаю.
⋮⋮⋮
No.
328619
>>328374Над якими темами приблизно працюєш? Маю на увазі аспіранську/докторську діяльність, якщо таким займаєшся. Звичайно, не конкретну тему, бо деанон, просто хоча б область приблизно.
⋮⋮⋮
No.
328620
OP
>>328619Область: алгебрична геометрія.
⋮⋮⋮
No.
328651
>задавайте питання.
За кого голосував у 2019?
⋮⋮⋮
No.
328740
Чи потрібні сучасному математику навички брати інтеграли вручну на папірці?
⋮⋮⋮
No.
328742
>>328740Хіба це не питання в стилі, чи потрібно сучасному письменнику читати античну літературу та філософію, адже, щоб написати хоррор, трилер чи детектив - це не потрібно. Ніколи не знаєш, коли це вміння стане у нагоді. А щось вміти, краще ніж не вміти, як і знати краще, ніж не знати.
⋮⋮⋮
No.
328753
OP
>>328740На мою думку скоріш ні, чим так. Принаймні на це має робитись акцент набагато меньший зараз, аніж в докомпʼютерну епоху і набагато меньший аніж робиться зараз в українськіх вишах, бо час чомусь навчити обмежений і витрачати його на технікі взяття інтегралів не дуже розумно. Але базове якісне уявлення мати треба, особливо якщо займаєшся чимось більш аналітичним і меньш алгебричним, бо це все одно то тут то там треба. Особливо питання збіжності/розбіжності, часто замкнена форма не потрібна, але потрібно знати що інтеграл який ти написав насправді має сенс - збігається.
⋮⋮⋮
No.
328760
Як розбирати статті ?
⋮⋮⋮
No.
328763
OP
>>328760Складно гарну відповідь надати, бо це дуже індивідуально. Я нотую прямо в pdf якісь зрозумілі/незрозумілі моменти. Якщо щось незрозуміло то це нерозуміння має бути максимально локалізовано, щоб було конкретне питання яке можна буде задати колегам або, як напевно в твому випадку, науковому керівнику. Ще на перше читання я пропускаю доведення і більше будую в деякому сенсі семантичну мапу на папері: які визначення де використовуються, які букви що позначають і так далі. На друге читання читаю доведення. Ще я приділяю особливу увагу простим прикладам або іграшковим моделям, навіть більше ніж формальним доведенням, якщо такі є; бо в прикладі зазвичай інкапсульовані всі основні ідеї важких доведень. Ну і наостанок мені здається має бути зовнішня мотивація читати конкретну статтю, бо якщо просто відкрив випадкову статтю на arxiv то тобі має бути важче собі продати що воно тобі потрібно. Якщо читаєш бо воно відповідає на твоє питання, або ти хочеш вивчити техніку яку хочеш сам використати, або в статті роблять щось схоже на те що робиш/хочеш робити ти - то воно і іде якось легше.
⋮⋮⋮
No.
328766
>>328753> більш аналітичним і меньш алгебричнимА в чому різниця між "аналітичним" і "алгебраїчним"? В моєму розумінні, "алгебраїчне" - це все що символьне, маніпулювання фразами по якимось правилам, мета - отримання одних фраз із інших. А що таке "аналітичне"? Бо матан для мене виглядав як сортоф алгебра коли я вивчав це в університеті.
⋮⋮⋮
No.
328767
OP
>>328766Якщо спрощувати, то аналіз це про дійсні числа і все що з ними повʼязано: нерівності, поведінка дійснозначних величин (=функцій) на нескінченності, поведінка в середньому, площі, обʼєми, механіка, динамічні системи.
Алгебра, це те що ти сказав: щось більш формальне, скінченновимірне, симетричне, точне - без "приблизних поведінок на нескінченності".
Межа між цими розділами розмита і нечітка, і є купа випадків коли алгебричні методи використовуються в аналізі і аналітичні в алгебрі, і є розділи і програми досліджень які мають як алгебричну так і аналітичну компоненту. Але в цілому людей з аналізу і людей з алгебри/геометрії цікавлять різні речі і вони не ходять на семінари до один одного.
⋮⋮⋮
No.
328777
>>328767>>328775Здається я зроз, напевно те що запам'ятовується в університеті з матану, це як раз алгебра похідних і інтегралів, але це суто інструмент, основний інтерес - це семантика того що ти описав, а в алгебрі самі алгебраїчні методи - це і сам інтерес, не просто проміжний інструмент.
А є якийсь приклад коли аналітичні методи використовуються в алгебрі? Просто для загального розвитку цікаво, бо я не уявляю з тією моделю цього всього яку наразі маю в голові.
⋮⋮⋮
No.
328778
OP
>>328777Ну скажимо оцінка Мінковського:
https://en.wikipedia.org/wiki/Minkowski%27s_bound це оцінка на розмір алгебричного обʼєкта отримана через підрахунок певних обʼємів. Або теорема Атьʼї-Зінгера об індексі:
https://en.wikipedia.org/wiki/Atiyah%E2%80%93Singer_index_theorem одне з найпростіших доведень використовує т.з. heat kernels що є фундаментальними рішенніями системи диферінціальних рівнянь, які рахують як тепло розповсюджується по тілу, а результат про алгебро-топологічні характеристики. Або одна з проблем тисячоліття, гіпотеза Бьорча Свіннертон-Дайера
https://en.wikipedia.org/wiki/Birch_and_Swinnerton-Dyer_conjecture передбачає що кількість раціональних точок на алгебричній кривій (алгебричні дані) мають контролюватися поведінкою L-фунції навколо s=1 (аналітичні дані). Щоб класичну теорію годжа побудувати треба знати про скінченновимірність елиптичних диференційних рівнянь, використовуючі теорію годжа можна потім обчислювати суто алгебричні характристикі алгебричних просторів (скажимо, геометричний/арифметичний рід). Дзета-регулярізації лапласіана (аналітичні дані) використовуються в побудові арифметичних груп перетину в геометрії Аракелова.
⋮⋮⋮
No.
328782
OP
>>328777Ще згадалась стаття Тао
https://terrytao.wordpress.com/2021/07/26/varieties-of-general-type-with-many-vanishing-plurigenera-and-optimal-sine-and-sawtooth-inequalities/ де він використав аналазі щоб оптимізувати певну алгебро-геометричну конструкцію.
Багато розділів математики мають як алгебричну як і аналітичну компоненту. Скажимо, геометрична/гіперболічна теорія груп, комплексна геометрія, теорія деформацій, адитивна комбінаторика, h-принцип, відповідність ленглендса, операторні алгебри і ще зароджуються нові.
⋮⋮⋮
No.
328783
>>328778Дякую, не то щоб я багато зрозумів із цього всього, але зберіг це все для референсу, можливо захочеться пригадати. А якщо брати більш загально, то коректно взагалі вважати, що алгебра - інструментальна область? Чи вони в принципі всі однаково інструментальні, в залежності від апплікації? Наприклад, якщо брати теорію чисел, то вона так само як і аналіз, використовує алгебру як дещо проміжне, чи в випадку теорії чисел, вона сама скоріше є частиною алгебри?
⋮⋮⋮
No.
328785
Що варто міняти в українській математичній освіті ?
⋮⋮⋮
No.
328786
OP
>>328783Ці слова всі не мають настільки чітких визначень як ти думаєш, більше сприймай їх як жанри музики аніж щось таке що пишуть в паспорті. Я би сказав що ні, алгебра - це про скінченовимірні системи з великою кількістю симетрій, це може бути цікаво само по собі.
Теорія чисел є алгебрична і аналітична, в аналітичній більше про асимптотичний розподіл простих і поведінку простих на нескінченності в алгебричної більше про точну кількість рішень/опис усіх рішень певних диофантових рівнянь.
⋮⋮⋮
No.
328788
OP
>>328785Треба щоб хоч один топ-університет типу УКУ або КШЕ відкрив факультет чистої математики де набирали би співробітників на конкурентній основі, з виставленням позицій на
https://www.mathjobs.org/ включно з іноземцями і іноземними постдоками, пропонуючи конкурентну зарплату, ну хоча би 60к грн (3х від середньої по Києву). Не обовʼязково великий департамент, 5-8 співробітників би вистачило. Ну тобто треба грощі, яких нема бо чиста математика це не пріорітет зараз.
Написати сучасний силабус можна, але його нема кому буде викладати, бо нема бажання і, іноді, знань.
⋮⋮⋮
No.
328795
>>328788Дякую, зроз
більш-менш.
⋮⋮⋮
No.
328821
>>328788А як самостійно вивчати математику через інтернет? Можно, наприклад, тупо проходити вправи з
https://www.khanacademy.org/ чи це погана ідея? Потрібні може якісь онлайн-курси, щоб там був живий викладач, якому можна задавати питання?
⋮⋮⋮
No.
328822
OP
>>328821khanacademy це гарна ідея, можливість задати питання і обговорити матеріал зайвою не буде, але напевно можна і без неї. Єдине що, з певного рівня треба вирішувати завдання на доведення, і в ідеалі щоб був хтось хто перевіряв доведення, але якщо ціль гарно зрозуміти шкільну программу то khanacademy має вистачити.
⋮⋮⋮
No.
328828
>>328822>Єдине що, з певного рівня треба вирішувати завдання на доведення, і в ідеалі щоб був хтось хто перевіряв доведенняА якщо доведення робити на Coq чи чомусь подібному?
https://en.wikipedia.org/wiki/Proof_assistant - взагалі таких програм дуже багато, яка з них краще підходить для навчання?
⋮⋮⋮
No.
328829
OP
>>328828Це погана ідея по багатьом причинам. Щоб кодувати доведення на пруф-асістанті тобі треба гарно розуміти як доводення працює без пруф-асістанта. Багато аргументів на пруф-асістантах кодується неприродньо і часто закодувати правильний аргумент на пруф-асістанті це окрема інженерна задача. Пруф-асістанти мають величезне комʼюніті ентузіастів, але досі не спромоглися закодувати математику навіть другого курсу, скажимо, я не впевнений що на якомусь пруф-асістанті закодовано доведення теореми про зворотню функцію або загальна формула Стокса (хоча може вже закадовано, вони розвиваються дуже стрімко).
Сказавши все це, якщо залишилося бажання погратися з пруф-асістантами, то я би порадив Lean, бо він є найбільш розвиненим серед сучасних.
⋮⋮⋮
No.
328940
>>328829>Багато аргументів на пруф-асістантах кодується неприродньо і часто закодувати правильний аргумент на пруф-асістанті це окрема інженерна задача.А що означає "неприродньо"? Чому не зробили пруф-асістант, де все природньо? Природньо це коли доказ записується на природній мові звичайними реченнями, а не на якійсь чітко специфікованій мові типу мови програмування, де всі кроки можна автоматично перевірити?
⋮⋮⋮
No.
328945
OP
>>328940Природньо, це коли "все що тривільно є тривіально тривіальним", як казав Пітер Фрейд. Є внематематичні причнии і математичні причини. Внематематичні в тому, що математики сотні років (або тисячі, залежить звідки рахувати) еволюційним шляхом знаходили способи вигадувати/записувати/створювати коректні складні аргументи. Неможливо сотні років інсайтів про способи записувати речі формалізувати формальною граматикою з BNF на 3.5 сторінки і очікувати що вона буде мати таку ж саму інтуїтивну і провідну силу як і всі ці синтаксиси, створені математиками за останні 3 сторіччя.
Дуже простий приклад, в визначені алгебричного поля в Lean
https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Field/Defs.html#Field покладено що 0^(-1)=0. Чому? Тому що Lean не працює з частково визначеними функціями і тому єдиний вихід це покласти що 0^(-1)=0 і додавати премісу x ≠ 0 в кожну теорему де є ділення на x, щоб уникати ділення на нуль. І таких тонких моментів повʼязаних з кодуванням сотні. Але це не те як думають математики і як математики вчать інших математикі
Математична причина в тому, що в деякому сенсі те якимм чином треба індентифікувати обʼєкти не до кінця зрозуміло і робиться на case-by-case basis. Бувають ситуації коли ти не можеш уникнути несінтетичності і тобі треба обрати модель. Інший математик може обрати іншу модель і потім ви можете довести що моделі в якомусь слабкому сенсі однаково. Це може бути природа речей (сабрекусрівний стамблблок) а може бути просто те що слабкі ідентифікації різних математичних структур поки що погано зрозумілі і гарного погляду досі не знайдено. Для живого математика це туди-сюди, бо він розуміє що це все про одне і те саме, хоча теж неприємно, але на рівні кодінгу це перетворюється зовсім в ад.
⋮⋮⋮
No.
328946
OP
>>328945До речі, якщо що я не критик пруф-асістантів, а зовсім навіть навпаки – їх дуже люблю.
⋮⋮⋮
No.
329042
>>328945>Дуже простий приклад, в визначені алгебричного поля в Lean https://leanprover-community.github.io/mathlib4_docs/Mathlib/Algebra/Field/Defs.html#Field покладено що 0^(-1)=0. Чому? Тому що Lean не працює з частково визначеними функціями і тому єдиний вихід це покласти що 0^(-1)=0 і додавати премісу x ≠ 0 в кожну теорему де є ділення на x, щоб уникати ділення на нуль.Для мене це виглядає як якась помилка в дизайні.
Чому для пруф-асистентів потрібна тотальність функцій? З математичної точки зору, чи вірно "1/0=1/0"?
В Coq теж є таке:
https://stackoverflow.com/questions/29282819/coq-qarith-division-by-zero-is-zero-why> Having this inverse operator be defined everywhere means that we'll be able to define other functions that compute with it without having to argue explicitly that its argument is different from zero, making it more convenient to use. Indeed, imagine what a pain it would be if we made this function return an option instead, failing when we pass it zero: we would have to make our entire code monadic, making it harder to understand and reason about. We would have a similar problem if writing a function that requires a proof that its argument is non-zero.Але я не дуже це розумію. Що значить "make our entire code monadic", чому від цього "it harder to understand and reason about"?
⋮⋮⋮
No.
329043
Ще один великий трід, який мені треба приховати. Я ось думаю, може треду краще перекотитися в /d чи /t, де він більш актуальний?
⋮⋮⋮
No.
329047
>>328821Тренажер з поясненнями способів рішення:
https://brilliant.org/s/math/Як вивчати математику та інші предмети за допомогою ШІ?
Одним з ефективних способів використання chatGPT є генерування питань з подальшою перевіркою своїх відповідей.
Аби оцінити свої знання можна зробити запит про створення опитування за обраними темами.
Ще можна поручити ШІ проаналізувати інформацію на різних сайтах та написати сумарний конспект з ключовими тезами та умоглядними малюнками.
Також є сенс поставити завдання ШІ розробити деталізований та логічний план-маршрут (з переліком необхідних засобів/матеріалів та розрахунком ризиків/ціни) для досягнення конкретної мети.
https://owltutors.co.uk/how-to-use-ai-for-science-and-maths-a-guide-for-students/Для складних обчислень існує
https://www.wolframalpha.com/Проте рішення (з підручником) на папері все одно важливі, бо, окрім фактичного результату, дають розуміння (часом досить елегантних) закономірностей та послідовності розв'язування, формують навички безпосередніх когнітивних операцій, розвивають уяву, пам'ять та пильність.
Підбірка "Кожне число є цікавим (1-300)":
https://www.youtube.com/watch?v=0nWyaPVWje8&list=PLsHKsUPI51jZNuiNgiIPVJ6xlvAsa8_rb"Неможливі завдання у геометрії:
https://www.wikiwand.com/uk/Трисекція_кута,
https://www.wikiwand.com/uk/Подвоєння_куба,
https://www.wikiwand.com/uk/Квадратура_круга ":
Impossible Geometry Problems: Trisecting Angle, Doubling Cube, Squaring CircleКорисні відео з візуалізаціями:
https://www.youtube.com/@MathVisualProofs"Як обчислювати перестановки та комбінації":
https://www.youtube.com/watch?v=hJRXKq2GEo8&list=PL3D365ABD4AEA148EЩе одна підбірка відео з уроками математики:
https://www.youtube.com/playlist?list=PLybg94GvOJ9FoGQeUMFZ4SWZsr30jlUYKА, ледве не забув, ще є вельми інформативна енциклопедія по геометричним фігурам:
https://mathinsight.org/
⋮⋮⋮
No.
329049
>>328374дивився на теорію Стівена Вольфрама з гіперграфами? Шо думаєш з цього?
⋮⋮⋮
No.
329069
OP
>>329042> Чому для пруф-асистентів потрібна тотальність функцій?Складно відповісти. Яким би чином це могло би виглядати інакше? Якщо ми ніяким чином не трекаємо область визначення, то як ми можемо бути впевнені що щось взагалі довели, бо що якщо область визначення пуста? А якщо трекаємо область визначення експліцитно, то яким чином мав би виглядати синтаксис для опису області визначення? І яким чином би виглядала теорія типів яка би мала такий синтаксис?
> З математичної точки зору, чи вірно "1/0=1/0"?З математичної точкі зору вираз 1/0 не визначений, принаймні в контексті алгебричних полів, тому тотожність 1/0=1/0 не має сенсу.
>Але я не дуже це розумію. Що значить "make our entire code monadic"Мається на увазі монада Maybe, або щось еквівалентне, яка є функціонально-програмним інструментом для обробки виключень, замість конструкцій типу try-catch-throw в С++. Він каже що альтернативі дві: або все де є ділення повертає додатковий біт про те що ділення було успішне/неуспішне, або ми визначаємо 0^(-1) будь чим і контролюємо самостійно щоб такого виразу не зʼявлялось.
>чому від цього "it harder to understand and reason about"?Більш важким і брудним би код виглядав ніж при підході який є зараз.
>>329049Не дуже уважно, але Вольфрам відомий тим що пише хуйню і усі розумні люди які його читали підтверджують що physics project не виключення, тому нема бажання заглиблюватись.
⋮⋮⋮
No.
329368
>>329069>Складно відповісти. Яким би чином це могло би виглядати інакше?А яким чином це виглядає якщо ми доводимо щось звичайним чином, без пруф-асистентів? Якщо треба довести 1/x=1/x для усіх x окрім 0, нам не треба нічого вигадувати про 1/0=0 тому що цей кейс ми виключили через передумову.
⋮⋮⋮
No.
329388
OP
>>329368Без пруф асістантів це ближче до першого підходу, коли кожного разу ділення повертає альтернативу, яку треба вирішити перевіркою того що знаменник не 0. Просто більшість перевірок в реальному житті імпліцитні, щоб поділити на 1 тобі не треба окремо доводити що 1≠0, в той час коли на пруф-асістанті треба кожного разу експліцитно це робити і це втомлює. Довизначати інпути частково визначених функцій в пруф-асістантах це good practice яка перевірена досвідом.
⋮⋮⋮
No.
329574
OP
>>329541>Чому так записують диференціювання? От наприклад d/dx на перший погляд виглядає як звичайний дріб, який можна скоротити до 1/x.Записують як d/dx щоб підкреслити що дифірінціювання діє на всю функцію [x ↦ w(u(x))], і тому що формальне застосування значка d/dx дасть d(w(u(x)))/dx, часто ще так записують щоб підкреслити що разглядають дію оператора дифірінціювання на функцію.
Запис dw/du гарний саме через композицію складної функції. Що застосування композиції складної функції це просто скоротити дріб. Що і показано в тебе на скріні: dw/dx = dw/du du/dx
Запис з постфіксним штрихом жахливий у всьому, окрім того що швидкий для запису.
>Чим відрізняються функції від змінних і по яким правилам одне перетворюється на інше?Змінна це синтаксис, тобто спосіб запису, функція це відповідність – не спосіб запису, а відповідність сама по собі, як обʼєкт. Але в данному контексті можна думати що різниці нема і помилок не буде, тому такий синтаксис і обраний.
>Та й взагалі, якщо записувати u(a+b) то тут незрозуміло, чи в функію u() кладемо аргумент a+b, чи це означає "u помножити на (a+b)" - чому така неоднозначність?В математиці часто приносять в жертву однозначність читання зрозумілості і легкості формул. Якщо декорувати кожний значок то елементарні формули стане важко читати і писати.
>Може є якийсь більш чіткий синтаксис для цього?Лямбда-числення.
>чи диференціювати по функції "v(x)" це щось неправильне, і треба диференціювати по змінній?Формально – це щось неправильне і треба дифірінціювати по змінній, неформально - нема різниці. Я би записав в твому синтаксисі це таким чином d{u(v(x));x}= ( d{u(v);v}(v(x)) )*d{v(x);x}, тобто в першому термі праворуч від "=" рахується функція d{u(v);v}, яка теж саме що функція d{u(s);s} або d{u(r);r}, і береться її значення в точці v(x). В цьому і сила нотації Лейбніца що вона підкреслює що неважливо сприймаєш ти щось як формальну змінну, чи як функцію яка залежить від формальної змінної. Наприклад:
1) ти можеш написати dx,
2) а потім згадати що x завжди був функцією від y, скажимо x(y) = sin(y), тому dx=dsin(y) = cos(y)dy
3) а потім згадати, скажимо, що y завжди був функцією від z, скажимо y=z^2 тому cos(y)dy = cos(z^2)dz^2 = 2z cos(z^2) dz
4) а потім згадати, скажимо, що z завжди був функцією від t, скажимо z=exp(t) тому 2z cos(z^2)dz = 2 exp(t) cos(exp(t)^2) dexp(t) = 2 exp(t) cos(exp(t)^2) exp(t) dt
і це буде теж саме що і з самого початку сприймати x як функцію від t. Розмиття різниці між "формальна змінна" і "функція яка залежить від формальної змінної" і є сила цього синтаксису.
Цей факт це те що в радянських підручниках називалось інваріантністю форми першого диференціала, хоча по суті це просто ланцюгове правило.
⋮⋮⋮
No.
329861
OP
>>329800Цілі зустрічаються в більшої кількості контекстів, ніж раціональні невідʼємні, тому на них концентрують більше уваги. Технічної різниці нема.
⋮⋮⋮
No.
330130
OP
>>330056В моїх визначеннях червона точка має початкові координати (0,0) швидкість v₁, синя точка має початкві координати (x₀,y₀) (x₀<0, y₀>0) і швидкість v₂.
Я порахував траєкторію синій точки во фреймі який рухається разом з червоною точкою, тобто червона точка в цьому фреймі завжди в центрі координат.
Ось формули в Десмосі:
https://www.desmos.com/calculator/ccm7rdcaaq там же порахований час за який синя точка підійте до червоной.
Дякую за задачу, було весело вирішувати, згадав студентські роки.
⋮⋮⋮
No.
330132
OP
>>330056Для першого квадранту (x₀>0,y₀>0) краще працює до речі:
https://www.desmos.com/calculator/uo86wdnuav
⋮⋮⋮
No.
330389
>>330132Шось це не співпадає з моїм чисельним моделюванням. Може я десь помилився?
https://files.catbox.moe/2gugm5.ods
⋮⋮⋮
No.
330419
OP
>>330389В мене не відкривається твоє .ods.
Підрахунок часу в мене неправильний, знайшов помилку, траєкторія в вишезгаданому фреймі має бути правильною. Якщо час буде, то на тижні спробую виправити і проанімувати в вольфрамі чи чимось такому.
⋮⋮⋮
No.
330751
OP
>>330421Твій сайт не відкривається, ERR_TUNNEL_CONNECTION_FAILED. Віддебагав формули:
https://www.desmos.com/calculator/rqcmcqo1en тепер має бути правильно.
Синя точка має початкові координати x₀,y₀ < 0 і v₂, червона точка має координати (0,0) і швидкість v₁.
Червоний графік це траєкторія синьої точки, траєкторія порахована тепер в звичайному фреймі, тобто це буквально траєкторія, але параметр t в Десмосі це параметр theta в викладках, не розібрався як його змінити в Десмосі, тому це не час, а кут.
⋮⋮⋮
No.
330752
OP
>>330421О, відкрився. Спробуй промоделювати тепер для x0=-1, y0=-1 і порівняємо результати.
⋮⋮⋮
No.
330778
OP
>>330762Для додатніх має бути початковий кут -pi + arctan(y0/x0) і має все працювати як і раніше. Ще треба трохи виправити знаки щоб не було взяття кореня з відʼємного числа.
https://www.desmos.com/calculator/suzi1j9kkm
⋮⋮⋮
No.
331454
OP
>>331197Радікали і аналітичність тут не зовсім до теми, радікали це корені степені n, а аналітичність це про гарну локальну поведінку. Ти хотів сказати "рішення (не) виражаються в елементарних функціях".
У випадку невизначенного інтегрування, тобто диференціальних рівнянь y' = f(x), є алгоритм - алгоритм Ріша (Risch algorithm) - який за скінчену кількість кроків каже чи варажається невизначенний інтеграл від f в елементарних чи ні. Є схожий алгоритм для однорідних диференціальних рівнянь другого порядку, типу a0 y + a1 y' + a2 y'' = 0. Це називається теорія Пікара-Весіота (Picard–Vessiot theory) і алгорітм Ковачіча (Kovacic's algorithm). Концепційно для лінійних диференціальних рівнянь вищих порядків теж має бути алгоритм, але напевно він не записаний ніде. Якщо строго, то алгоритм є за модулем проблеми констант, але на практиці це не буде проблемою і думати про це не треба.
Для довільних диференціальних рівнянь такого нема навіть близько. Скажимо, існування і регулярність рішень рівнянь Навʼє-Стокса це одна з сьоми "проблем тисячоліття", за рішення якої інститут Клея дасть мільйон доларів. Не вираз в елементарних, а просто існування рішення для довільних початкових умов конкретного диференціального рівняння - це вже одна з основних проблем математики сьогодення.
Але я доволі далеко від таких питань і можу щось не знати або пропустити.
>Наприклад, рівняння вище 4 степеня вже не мають загального розв'язку в радикалах, тут досить чітка границя.Ну, аналогічне твердження: неоднорідні диференціальні рівняння першого ступеня вже не мають виразу в елементарних функціях, скажимо, рівняння y' = sin(x)/x. Не назвав би це "чіткою границею". Сила теорії Галуа в тому що вона конкретно каже які рівняння мають формулу а які не мають і дає рецепт як цю формулу отримати для тих рівнянь які мають, а не в тому що дає число 4. Аналогічно, сила диференціальної теорії
Галуа/теорії Пікара-Весіота в тому, що каже які лінійні диференціальні рівняння мають рішення в елементарних, а які ні, і дає алгоритм як рішення отримати для тих які мають.
⋮⋮⋮
No.
331455
OP
>>331197>Наприклад, рівняння вище 4 степеня вже не мають загального розв'язку в радикалах, тут досить чітка границя.До речі, можливо ти це розумієш, але треба зазначити що правда те що
деякі рівняння степеня вище 4 не мають розвʼязку в радикалах, а деякі мають (і, відповідно, не існує загальної формули для
всіх рівнянь, але для деяких існує). Ну наприклад x⁵ = 0 має.
⋮⋮⋮
No.
332206
Які потрібні аксіоми для доведення зависання машини Тюрінга? Зрозуміло що це нерозв'язна задача у загальному випадку, але якась часткова система аксіом для цього є?
⋮⋮⋮
No.
332207
>>332206Якої саме, описаної лише в теорії, чи реальо існувавшої Бомбе, котра підбирала коди до Еніґми?
Так остання й так підвисала, доки не знайшли початковий ключ - хайль Ґітлер. Ти що, Гру в імітацію не дивився?
А описана в теорії ніколи не зависне, бо вона працює лише теоретично за ідеальних умов.
⋮⋮⋮
No.
332209
>>332207>А описана в теорії ніколи не зависне, бо вона працює лише теоретично за ідеальних умов. А як ми можемо довести, що через квантову теорію струн чи ще якусь невідому маячню не можна створити машину Тюрінга з нескінченною стрічкою, яка може вічно працювати?
⋮⋮⋮
No.
332210
>>332209Так мова про зависання чи про працювання вічно? Вічно нічого не зможе працювати, бо за існуючих загальноузгоджених положень теплова смерть Всесвіту наступить неодмінно. Тут тоді це спочатку потрібно спростовувати.
Ну й знову виникає проблема в коректності поставленого питання. У моєму розумінні зависання - це перевантаження умовної машини вхідними даними, тут можливо варто провести паралелі з операційними системами або додатками з навантаженими обчислювальними завданнями, як проходить їхнє зависання, чому воно виникає тощо. Й слід шукати якісь дослідження з цього приводу.
⋮⋮⋮
No.
332212
>>332210>Вічно нічого не зможе працювати, бо за існуючих загальноузгоджених положень теплова смерть Всесвіту наступить неодмінно.Ці загальноузгоджені положення можуть бути помилковими. Всесвіт в якийсь момент може змінити свою поведінку, чи може відкриють способи подорожувати в паралельні світи, чи ще щось таке. Циклічна модель Всесвіту ще є.
Питання стосується теоретичної машини Тюрінга, яка в умовному ідеальному всесвіті може вічно працювати, з нескінченною стрічкою. Потрібна математична теорія, через яку для деяких окремих випадків можна довести, що ось така програма на ідеальній МТ в вакуумі зависне.
⋮⋮⋮
No.
332307
OP
>>332206Математика це і є щось що може доводити зависання програм. Скажимо, доведення великої теореми Ферма це доведення того що програма яка шукає контрприклад для цієї теореми, а саме, четвірку цілих додатніх x,y,z,n, таких що n>2 і x^n + y^n = z^n, зависає. Тож будь яка формальна система яка має достатньо виразної сили щоб формалізувати розсуди які робляться математиками підходить під твій запит. Скажимо ZFC (теорія множин), або PA (арифметика).
⋮⋮⋮
No.
332309
>>332307Ну от конкретно, якщо є програма на машині Тьюринга (більш конкретно - можна взяти мову brainfuck з нескінченною стрічкою), яка перебирає всі припустимі x,y,z,n для перевірки теореми Ферма, то що за аксіоми та modus ponens потрібні, щоб вивести доказ зависання програми? Програма на brainfuck це не множина, це стрічка з скінченним набором символів, треба мати якусь систему правил, яка "знає" про ці символи і якось може їх аналізувати і щось доводити виходячи с з них. Просто однієї теорії множин не вистачить.
⋮⋮⋮
No.
332320
OP
>>332309Програма на brainfuck, як сам ти сказав, це стрічка скінченої довжини над алфавітом з 9 символів. І у теорії множин і у аріфметики є достатньо виразної сили щоб визначити і говорити про такі обʼєкти, а також про процес і результат їх роботи як програм на Brainfuck. Після того як визначення того що таке програма, що таке обчислення і що таке зупинка програми дані всередині теоретико-множинної мови можна застосовувати всі її інструменти для довдення того що певна програма зупиняється. Визначення зазвичай даються як на сторінках 9-10 тут
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf там машини Тьюрінга звісно, а не brainfuck. У зупинки програм тут нема ніякої специфіки, щоб щось доводити, треба спочатку дати визначення, так воно завжди.
⋮⋮⋮
No.
332321
OP
>>332309> Просто однієї теорії множин не вистачить.Теорії множин вистачить на все. Хоч це і не зроблено, але у спеціалістів нема ніяких сумнівів стосовно того, що довдення теореми Ферма може бути формалізовано на мові теорії множин.
⋮⋮⋮
No.
332322
>>332321Треба якось через теорію множин описати машину Тьюринга і якісь механізми для доведення чогось про неї. Як саме це робити? Треба визначити якісь аксіоми рівнем вище, які щось дозволяють доводити про обчислення, що саме за аксіоми? От якщо через теорію множин описувати арифметику Пеано, там теж вона нізвідки не з'являється, там якось кодуються числа і якось кодується аксіоматика Пеано, а яку аксіоматику треба закодувати для доведення щось про МТ?
⋮⋮⋮
No.
332326
OP
>>332322Машина Тьюрінга, зазвичай і описується в теоретико-множинних термінах, так як це зроблено на сторінці 10 в
https://www.claymath.org/wp-content/uploads/2022/06/pvsnp.pdf це не чиста формалізована теоретико-множинна мова звісно, але в цьому випадку різниця між формалізованим і неформалізованим варіантом не велика. Механізми для доведення описувати окремо не треба по тій самій причині, по який не треба окремо описувати механізми для доведення чогось про графи, трикутники, диференціальні рівняння, будь що інше - вони є одними і тими самими для всієї теорії множин - логіка прешого порядку з рівністю.
> От якщо через теорію множин описувати арифметику Пеано, там теж вона нізвідки не з'являється, там якось кодуються числа і якось кодується аксіоматика Пеано, а яку аксіоматику треба закодувати для доведення щось про МТ?Не знаю, думаю що такої нема, бо це не той спосіб яким люди думають про ці питання. Програми тут нічим не вирізняються, нема теорії для того щоб говорити окремо про диференціальні рівняння, про графи, про топологічні простори, про інтеграли, те що є теорія щоб окремо говорити про натуральні числа це виключення а не тренд. Будь-яка сильна теорія здатна в собі формалізувати будь-які твої розсуди про зупинку і незупикну програм. Тому зазвичай беруть вже знайомі, класичні теорії, типу ZFC або PA і запитують, скажимо, наскільки багато тверджень про незупинку програм (вони називаються Pi_1-твердженнями в арифметичній ієрархії) ці теорії здатні довести. Скажимо, відомо, що ZFC доводить строго більше Pi_1-тверджень аніж PA, тобто є програми які зациклюються і ZFC це здатна довести а PA ні.
⋮⋮⋮
No.
332328
>>332326> Не знаю, думаю що такої нема, бо це не той спосіб яким люди думають про ці питання.А чому треба орієнтуватись на те, як люди думають? Так наприклад можна створити таку універсальну систему аксіом шоб доводити будь-що, якщо задача механічно може бути трансформована в питання "чи зависне якась там програма для МТ"? І доводити це можна не людиною, а якимось штучним інтелектом через теорем-прувери
⋮⋮⋮
No.
332329
OP
>>332328Я не казав що треба, хоча звісно що треба, я казав причину по який я думаю що того що ти хочеш ніде не записано. ZFC і PA вже і є такими універсальними системами аксіом щоб доводити будь-що, навіть твердження які не еквівалентні зависаню деякої машини Тьюрінга, а взагалі будь-які математичні твердження – від шкільної геометрії до теореми Кодайри про занулення. Це те як працюють пруф асістанти буквально сьогодні, подивись на список теорем в Metamath
https://us.metamath.org/mpeuni/mmtheorems.html або матлібу в Lean
https://leanprover-community.github.io/mathlib4_docs/Mathlib.html Про ШІ в пруф асістантах мало що знаю, думаю що це вже робиться, з тою чи іншою ступеню успіху, бо ідея на поверхні. В пруф асістантах зазвичай використовують не логічні системи в Гільбертовськом стилі а теорії типів і системи натурального виводу по типу MLTT. Бо кодувати доведення на них щручніше, але суть та сама.
⋮⋮⋮
No.
332524
>>332329>ZFC і PA вже і є такими універсальними системами аксіом щоб доводити будь-що, навіть твердження які не еквівалентні зависаню деякої машини Тьюрінга, а взагалі будь-які математичні твердження – від шкільної геометрії до теореми Кодайри про занулення.Але ж теорема Гудштейна в PA ніяк не доводиться. Треба додаткові аксіоми, щоб її довести.
І звідки впевненість у тому, що якщо з використанням ZFC і PA довели, що якась програма на МТ ніколи не завершиться, то це насправді так і буде? Що будуть робити математики, якщо буде знайдений контрприклад (коли є доказ що програма зациклюється, а насправді можна перевірити і впевнитись, що вона не зациклюється)?
⋮⋮⋮
No.
333122
OP
>>332524>Але ж теорема Гудштейна в PA ніяк не доводиться. Треба додаткові аксіоми, щоб її довести.>І звідки впевненість у тому, що якщо з використанням ZFC і PA довели, що якась програма на МТ ніколи не завершиться, то це насправді так і буде?Це все правда, я казав по модулю таких метаматематичних феноменів, бо вони мені здалися трохи іррелевантні до тих питань які ставив мені безос (або також ти?) вище. Але приємно бачити man of culture.
> Що будуть робити математики, якщо буде знайдений контрприклад (коли є доказ що програма зациклюється, а насправді можна перевірити і впевнитись, що вона не зациклюється)?Виявили би що живемо в ще більш цікавому світі аніж думали раніше, бо Cігма_1-нечесність аріфметики Пеано було би відкриття рівня теорії відностності або квантової механіки, трагедії не бачу взагалі. Згадалася нотатка Хамкінса
https://jdh.hamkins.org/wp-content/uploads/2012/09/A-question-for-the-math-oracle.pdf з Workshop of Infinity and Truth. Шкода, що ні.
⋮⋮⋮
No.
333298
>>333122>Виявили би що живемо в ще більш цікавому світі аніж думали раніше, бо Cігма_1-нечесність аріфметики Пеано було би відкриття рівня теорії відностності або квантової механіки, трагедії не бачу взагалі.Не розумію. Чому якась неточність(неправильність) теорії означає що ми в якомусь іншому світі живемо?
⋮⋮⋮
No.
333339
OP
>>333298На це дійсно по-різному дивитись можна бо це роздуми про гіпотетичний, фантастичний сценарій, і твій погляд – що це просто про неточність інструмента - теж валідний.
На мою думку арифметика Пеано це щось глибше ніж просто ще одна чергова формальна теорія, бо вона описує базові, майже метафізичні, принципи про натуральні числа. В кінці-кінців, це те як ці аксіоми писались - це записані правильні твердження для конкретної моделі - стандартної моделі натуральних чисел - а не навпаки. Її протиречивість (випливає з Сігма_1-нечесності в данному випадку) значила би що такого єдиного когерентного поняття як "натуральні числа" взагалі нема, нема цієї стандартної моделі натуральних чисел, що воно ілюзорне, разом з усіма індуктивними конструкціями такими як строки і алгоритми, що з однієї точки зору деяка спеціально сконструйована програма може зупинятися, а з іншої ні, і що обидві точки зору однаково валідні, і що взагалі "програма яка (не) зупиняється" це некогерентне, відносне поняття або, більш радикально, поняття яке не має сенсу.
Але це все, ще раз, про фантастику, звісно PA непротиречива і чесна, хоч це і не можна довести з більш простих принципів аніж сама PA.
⋮⋮⋮
No.
333577
>>333339>На мою думку арифметика Пеано це щось глибше ніж просто ще одна чергова формальна теорія, бо вона описує базові, майже метафізичні, принципи про натуральні числа.Але ж в реальному всесвіті нема чисел в чистому вигляді. Числами можна щось характеризувати, наприклад умовну відстань між двома камінчиками, кількість камінчиків чи ще щось таке, а самих чисел нема як незалежного фізичного явища.
>значила би що такого єдиного когерентного поняття як "натуральні числа" взагалі нема, нема цієї стандартної моделі натуральних чисел, що воно ілюзорне, разом з усіма індуктивними конструкціями такими як строки і алгоритмиА воно по яким причинам зараз не ілюзорне? Ще ж є арифметика Пресбургера наприклад, чим вона краще/гірше за PA? На ній можна описувати машину Тьюринга?
І що таке Сігма_1-нечесність, і які ще нечесності бувають?
⋮⋮⋮
No.
333587
OP
>Але ж в реальному всесвіті нема чисел в чистому вигляді. Числами можна щось характеризувати, наприклад умовну відстань між двома камінчиками, кількість камінчиків чи ще щось таке, а самих чисел нема як незалежного фізичного явища.Це філософське питання тому різні точкі зору можливі. Нема, але, на мою думку, це не значить що реальний світ ніяким чином не повʼязаний з формальним світом. Схожим на твій розсуд чином можна сказати що в реальному світі і машин Тюрінга, або програм, нема, а є тільки конгломерації з транзісторів по яким час від часу бігають електрони (яких теж нема, а є тільки красиво мерехтящі промені лаймового світла в електронно-променевих трубках?). Нема, але доведення того що машина Тюрінга поводить себе певним чином, наприклад, зупиняється, це передбачення про те що деякий клас фізично існуючих механізмів - реальних компʼютерів які намагаються запускати відповідну прогарму - буде поводити себе певним очікуванним чином. Так само і з натуральними числами. Якщо протеріччя буде знайдено то аналізуючи його доведення можна буде щось сказати про якийсь клас експерементів з програмами в реальному світі. Що саме - важко сказати - бо я думаю що протеріччя нема.
>А воно по яким причинам зараз не ілюзорне? Ще ж є арифметика Пресбургера наприклад, чим вона краще/гірше за PA? На ній можна описувати машину Тьюринга? І що таке Сігма_1-нечесність, і які ще нечесності бувають?Якщо ти віриш що "машина Тюрінга зупиняється" і "машина Тюрінга не зупиняється" це абсолютні поняття які однакови для всіх спостерігачів завжди усюди, і що вони чітко визначені і мають абсолютний сенс, то я би це назвав неілюзорністю. Можна уявити світ в якому така абсолютність поставлена під питання, як це було за абсолютністю одночасності в XX сторіччі, або як це зараз з теоретико-множинною істиною, що не всі математики універсально приймають твердження про те що існує єдина універсальна модель теоретико-множинного всесвіту в якої всі питання мають рівно одну відповідь.
>Ще ж є арифметика Пресбургера наприклад, чим вона краще/гірше за PA? На ній можна описувати машину Тьюринга?Арифметика Пресбургера це підмножина арифметики Пеано, вона така сама як аріфметика Пеано тільки без множення. Гірше за PA те що вона не є сильною теорією і там не можна виразити твердження по типу "машина Тюрінга M (не) зупиняється" і, через це, не можна кодувати примитивно-рекурсивну роботу зі строками, і через це не можна кодувати більшість математики, як це можна кодувати в PA. Краще тим що це разрешима теорія, вона повна, непротеричива і є алгорітм який для кожного твердження записаного на арифметичній мові без множення каже чи є воно вірним (еквівалентно, чи доводиться воно в арифметиці Пресбургера), чи ні.
>І що таке Сігма_1-нечесність, і які ще нечесності бувають?Сігма_1-чесність (Sigma_1-soundness) значить що якщо PA доводить що програма зупиняється, то вона зупиняється в реальному світі. Сігма_1-нечесність значить що теорія не є Сігма_1-чесною. Сігма_1 це нотація з арифметичної ієрархії
https://en.wikipedia.org/wiki/Arithmetical_hierarchy взагалі C-чесність можна сформулювати для будь-якого класу тверджень C.
Є більш-менш три властивості про "хорошість" арифметичних теорій:
1) непротиречивість - нема виводу P і не Р, для деякого P
2) омега-непротиречивість - нема такого предиката P(x), що теорія доводить P(0), P(1), P(2), ... і одночасно з цим доводить "існує x: не P(x)"
3) арифметична чесність - якщо теорія щось доводить, то так воно і є в реальному світі
З 2) випливає 1), з 3) випливає 2), але не навпаки.
⋮⋮⋮
No.
333597
>>333587>арифметична чесність - якщо теорія щось доводить, то так воно і є в реальному світіА це як? Як можна зрозуміти, чи є реальному світі множина всіх множин наприклад?
⋮⋮⋮
No.
333599
OP
>>333597Я тільки про арифметичні теорії говорив. Арифметична чесність це тільки про арифметичні твердження, тобто про твердження на арифметичній мові: на мові логіки першого порядку з рівністю і сігнатурою (+,×,>,0,1).
⋮⋮⋮
No.
333612
OP
>>333597Але насправді, те що це тільки про арифметичні теорії не те щоб особливо важливо, бо відповідь - перевірити не можна ніяк, в цьому і є суть гьоделевських ефектів. В деякому сенсі, арифметична чесність залежить від метатеоретичного бекграунду. Щоб навіть виразити предикат "теорія Т є арифметично чесною" треба вже мати метатеорію яка є сильною достатньо, щоб вірити в якусь свою стандартну модель натуральних чисел. Скажимо, в якості метатеорії можна взяти аріфметику другого порядку або теорію множин. І звісно тоді всі ці метматематичні складності переносяться просто на рівень вище - тепер не можна говорити про чесність аріфметики другого порядка або теорії множин. Але якщо ти стоїш на певних філософських позиціях (арифметичний абсолютізм/платонізм/монізм) то про арифметичну чесність можна думати в абсолютних термінах, як я і написав "реальний світ". Техничної різниці майже не буде, просто коли робиш розсуд, або пишеш текст/статтю, можеш на початку написати "в якості метатеорії ми беремо ZFC" і тоді і формалісти задоволені будуть і ти можеш думати в абсолютних термінах, про реальні натуральні числа в реальному світі.
⋮⋮⋮
No.
333737
>>333736>Розмір массива тільки парне число. помилився
⋮⋮⋮
No.
333773
OP
>>333736Це перестановка зворотня до out-shuffle (або ще називають perfect out-shuffle). Про неї трохи написано тут
https://en.wikipedia.org/wiki/Faro_shufflehttps://mathworld.wolfram.com/Out-Shuffle.htmlhttps://mathweb.ucsd.edu/~ronspubs/83_05_shuffles.pdfЩоб дізнатися мінімальне число транспозицій, або свопів, як ти це називаєш, достатньо розкласти перестановку на цикли і обернути усі цикли, це дає алгоритм за O(n) виписати таке розкладення для будь-якої перестановки, не тільки для твоєї конкретної.
Якщо тебе цікавить тільки кількість свопів, то не важливо розглядати обернену перестановку чи ні, тому я далі буду говорити про out-shuffle довжини 2n але все застосовується також до оберненої до неї. Кількість свопів = 2n - кількість циклів, тому достатньо знати кількість циклів. Кількість циклів це
https://oeis.org/A327551 також з Леми 4 в
https://mathweb.ucsd.edu/~ronspubs/83_05_shuffles.pdf випливає, що кількість циклів у out-shuffle довжиною 2^k це кількість покрашених в два коліра ожерель довжини k з точністю до циклічного зсуву, але не перегортання, що є послідовністю
https://oeis.org/A000031 там є точна формула яка в твому випадку значить що
(кількість свопів у out-shuffle довжиною 2^k) = 2^k - (1/k)Sum_{ d divides k } phi(d)2^(k/d)
останній доданок легко оцінюється ~2^k/k звідси виходить що
(кількість свопів у out-shuffle довжиною 2^k) ~ 2^k (1 - 1/k)
Не чимось диким є допустити що загальна асимптотика є
(кількість свопів у out-shuffle довжиною 2n) ~ 2n (1 - 1/(log₂ (2n)))
але я з наскоку не бачу аргументу. Не те щоб зовсім неможливо адаптувати щось схоже на Лему 4 зі статті Грехема на загальний випадок, але це не для Кропивача вже, бо, по-перше, забагато роботи, а по-друге схоже що людям цікаві ці послідовності, на статтю Дьʼяконіса-Грехема-Кантора 14 посилань наприклад, тому я вже краще студента візьму, якщо настрій буде, і ми гарну курсову напишемо. Звідки задача?
⋮⋮⋮
No.
333774
>>333773https://wandbox.org/permlink/wjbU2lEyrhBvnjSO - написав програму, яка знаходить цикли, але як мені знайти цикли так, щоб не натрапити на один і той самий два рази? Тобто, як для якого завгодно розміру потримати перелік місць з циклами, щоб два рази на той самий не потрапити?
⋮⋮⋮
No.
333775
OP
>>333774Ти заводиш bool-масив і відмічаєш ті елементи по яким ти вже колись пройшовся. І стартуєш свій find_loop тільки якщо ти ніколи по цьому елементу не проходився.
⋮⋮⋮
No.
333776
>>333773>Звідки задача?З голови. Така перестановка в швидкому перетворенні Фур'є використовується для
https://en.wikipedia.org/wiki/Butterfly_diagram
⋮⋮⋮
No.
333777
>>333775>Ти заводиш bool-масив і відмічаєш ті елементи по яким ти вже колись пройшовся. І стартуєш свій find_loop тільки якщо ти ніколи по цьому елементу не проходивсяЦе і так очевидно, може існує більш математичний спосіб?
⋮⋮⋮
No.
333778
OP
>>333777Якщо i < starpos в якийсь момент то значить цей цикл вже був. Це при умові що ти пробуєш шукати цикли послідовно з 0 до n. Але в такому разі буде O(n²) часу в гіршому випадку. Інших не знаю.
⋮⋮⋮
No.
333780
>>333778Я ось поекспериментував
https://wandbox.org/permlink/aqJaeLhU3qNhUtKs - на розмірі 22:
{0, };
{1, 11, 16, 8, 4, 2, };
{2, 1, 11, 16, 8, 4, };
{3, 12, 6, };
{4, 2, 1, 11, 16, 8, };
{5, 13, 17, 19, 20, 10, };
{6, 3, 12, };
{7, 14, };
{8, 4, 2, 1, 11, 16, };
{9, 15, 18, };
{10, 5, 13, 17, 19, 20, };
{11, 16, 8, 4, 2, 1, };
{12, 6, 3, };
{13, 17, 19, 20, 10, 5, };
{14, 7, };
{15, 18, 9, };
{16, 8, 4, 2, 1, 11, };
{17, 19, 20, 10, 5, 13, };
{18, 9, 15, };
{19, 20, 10, 5, 13, 17, };
{20, 10, 5, 13, 17, 19, };
{21, };
Тут можна бачити, що початки всіх циклів можна знайти до середини, ідучи тільки по непарним значенням.
Перший цикл {1, 11, 16, 8, 4, 2, } зайняв собою 2 4 8 16
Третій цикл {3, 12, 6, } зайняв 12 6
Інтуїтивно здається, що всі цикли можуть починатися тільки з непарних чисел в меншій половині. Контрприкладів поки не бачу
⋮⋮⋮
No.
333782
>>333780Ну тобто так, наступний елемент парного числа в циклі завжди менше в два рази, тому початки (найменший елемент) в циклі завжди непарне число
⋮⋮⋮
No.
333785
OP
>>333782>Не чимось диким є допустити що загальна асимптотика є>(кількість свопів у out-shuffle довжиною 2n) ~ 2n (1 - 1/(log₂ (2n)))>але я з наскоку не бачу аргументу.До речі, я зараз подумав що все-таки це занадто швидко. Чого варто очікувати так це
(кількість свопів у out-shuffle довжиною 2n) = 2n - O(2n/(log₂ (2n)))
що випливало би з того, що 2^k є екстремальним випадком, що значить, що для будь яких k і n, таких що 2n < 2^k, вірно що
(кількість циклів у out-shuffle довжиною 2n) < (кількість циклів у out-shuffle довжиною 2^k).
Компʼютер показує що це так і є, але аргумента поки не бачу.
⋮⋮⋮
No.
333788
я гуманфтарій, ану вирішіть мені рівняння
x+y=й
⋮⋮⋮
No.
333798
>>333785Зрозуміло, що цикли для масивів довжиною 2n починаються з першого непарного числа 1 до останнього до середини, яке або n або n-1 в залежності від парності числа n. Початком я називаю найменший елемент циклу. Початки завжди "непарні і знаходяться до середини", але не всі "непарні і до середини" є початками. Як змінюється відсоток "непарних і до середини" які є початками, в залежності від n?
⋮⋮⋮
No.
333814
>>333813Опір повітря - real thing
Отой "вакуум" - то ти хуйні надумав від надлишку шкільних знань і здогадок. Якщо там щось і утворюється, то це абсолютно ніяк не вплине на швидкість в глобальному вимірі
Придивись до всіх швидкісних авто - перед гострий і оптікаючий, а жопа може бути широкою. Не думаю, що їх конструктори знають менше ніж пересічний кропивачер
Коротше роби як на нижній картинці (гострим вперед). інакше ти буквально зі свого причепу зробиш вітрило.
⋮⋮⋮
No.
333827
>>333798https://wandbox.org/permlink/X5Azut6dF3XpKND1 код для підрахунку циклів (сподіваюсь що без помилок).
Виглядає так, що кількість циклів зростає приблизно лінійно, іноді кудись провалюючись.
На OEIS такої послідовності не знаходиться.
⋮⋮⋮
No.
333831
>>333814На перший погляд звучить логічно, але якщо подумати: повітря якимось чином має потрапити в задню частину на дргому малюнку. Тобто, там в любому випадку створюється область пониженого тиску, яка гальмує причеп. До речі, ця конструкція схожа на крило. В літаків крила виглядають саме як перше зображення. Бонусом отримуємо підйомну силу, що знижує навантаження на колеса.
⋮⋮⋮
No.
333862
>>333827Хоча ні, то кількість свапів.
Ось
https://wandbox.org/permlink/ETb5Xgz2F929qSGx тут кількість свапів і кількість циклів
⋮⋮⋮
No.
333955
OP
>>333785Я подумав трохи більше і помітив, що точна формула для числа циклів випливає з гіпотези на
https://oeis.org/A327551, а сама гіпотеза є очевидною - одне застосування out-shuffle це буквально перенести елемент x на позицію 2x (mod 2n-1) для всіх x окрім x = 2n-1, який залишається на місці. Тому число циклів це буквально число циклотомічних факторкласів за модулем 2n-1 і ще + 2 бо треба додати два тривіальних цикли {0} і {2n-1}. Вирішуємо відкриті гіпотези прямо на Кропивачі! Можете додати цей розсуд на OEIS і написати в дужках що це безос з Кропивача вигадав. Тому число циклів в out-shuffle довжини 2n це (Sum_{d|(2n-1)} phi(d)/ord(2,d)) + 1. Звідси можна вивести що 2n = 2^k екстремальний випадок, в тому сенсі в якому я казав раніше. Тому асимптотика кількості циклів в out-shuffle довжини 2n це O(2n/log₂(2n)). Ця асимптотика є точною в тому сенсі що це ~-асимптотика (а не просто О-асимптотика) коли n = 2^k.
>>333862До речі, на системах компʼютерної алгебри типу Wolfram Mathematica аналогічний код який рахує цикли виглядав би:
OutShuffle[list_]:= Flatten[Transpose[Partition[list, Length[list]/2]]]
Table[First@PermutationCycles[OutShuffle[Range[2*n]],All] // Length, {n,1,2500}]
так що іноді корисно підбирати інструмент під задачу!
>>333798 Не думаю що щось краще алгоритма є. Є in situ ( O(log² n) памʼяті) лінійний алгоритм щоб порахувати сіди, або представники, циклів:
https://www.emis.de/journals/DMTCS/pdfpapers/dm050111.pdf там для in-shuffle перестановки, але для out-shufflе має бути більш-менш такий самий, мінімальність cідів там не гарантується. Або є твій алгоритм який ти записав за O(1) памʼяті і O(n²) часу.
З відсотком простіше, бо це сутністно просто відсоток кількості циклів відносно n/2, якщо точніше, то твій конкретний відсоток це (кількість_циклів(2n)-2)/floor(n/2) а кількість циклів я вже порахував точно. Більш того, я порахував асимптотику, з якої випливає що твій відсоток буде падати як O(1/log₂(n))
>>333813 Тут більше інженерів треба, а не фізиків. Перший ефект називається base area wake formation, або іноді rear vacuum. В статті
https://www.researchgate.net/publication/352242970_Flow_analysis_of_rear_end_body_shape_of_the_vehicle_for_better_aerodynamic_performance є порівняння трьох геометрій автівки і для кожної порахований коефіціент аеродиномічного опору і коефіціент підйому. Всі вони з гострим носом. Але зазначається що в геометріях з широким задом base area wake formation грає значну роль в формуванні коефіціента аеродинамічного опору, пишуть що біля 80% для squareback car.
⋮⋮⋮
No.
333966
Ой, слухай, є питання, яке мене дуже турбує. Мабуть, воно з теорії інтервалів, але цікаво ТОЧНО взнати, звідки. Може, це просто арифметика.
Суть у тому, що як ефективно, правильно та швидко розрахувати кількість днів, яка потрібна для чогось, і при цьому не помилитися, враховуючи, що якісь дні включаються чи виключаються? Точніше, останні.
В мене з усним рахунком все чудово, з математики в універі були високі оцінки, в школі теж, в ліцеї десь дев'ятка була, але там просто треба було хоча б щось вчити вдома, а я грав у комп'ютерні ігри. За освітою — магістр інженерії ПЗ. Диплом не з відзнакою, але середня десь верхня В.
Так ось, з цими календарями в мене проблема, а Гаусс, скажімо, розраховував дату Великодня на 50 років вперед чи щось таке. Думаю, що в умі. Як навчитися так робити?! Ну, і який розділ математики описує моделі для календарів?
⋮⋮⋮
No.
333967
*останні та перші дні
⋮⋮⋮
No.
333968
Тільки не кажи, що це треба в цьому ПРАКТИКУВАТИСЯ... З моєю-то лінню...
⋮⋮⋮
No.
333969
Просто усе інше в мене добре виходило БЕЗ практики та занять вдома.
⋮⋮⋮
No.
333970
*без додаткової практики, окрім уроків/лекцій
⋮⋮⋮
No.
333971
В універі я майже завжди здавав усі лаби перед самою сесією, бо увесь інший час грав у комп'ютерні ігри, слухав музичку та тролив/дискутував в інтернетах.
Хоча в мене психічний розлад, тому моя лінь, цілком можливо, викликана ним. На якомусь етапі я вже не зміг так зробити, довелося один раз брати повторний курс, інший — академічну відпустку. Але бюджет довелося зберегти.
ЗНО без підготовки здав в середньому на 185, три предмети: українська мова та література, математика та англійська.
⋮⋮⋮
No.
333972
Але середній бал ліцею зі зрозумілих причин був усього 175... :-(
⋮⋮⋮
No.
333973
Ліл, я згадав, що наш фізик у ліцеї диктував задачу, а через 3 секунди запитував: "Хто вже розв'язав?"
Ще той вінрарний троляка був.
⋮⋮⋮
No.
333975
Їбать тут онлайну, звичайно... Де всі українські мамчині цєннікі-нєгілісти-наукові-аметисти?
⋮⋮⋮
No.
333977
На фронті воюють, пишуть сюди з нуля. Ліл. Тому й рідко, бо зайняті бойовими завданнями. Ліл[2]
⋮⋮⋮
No.
333980
В тебе ще проблема з увагою походу... Вибачай. :3
Два рази пост відправив, один раз фрагмент тексту повторив.
⋮⋮⋮
No.
333983
OP
>>333966В мене та ж сама проблема, ще праворуч-ліворуч. Я, по-перше, намагаюсь думати в термінах напівінтервалів, що поширено в програмуванні і дискретній математиці, тому я памʼятаю що b-a це кількість цілих точок в напівінтервалі
>>333966В мене та ж сама проблема, ще праворуч-ліворуч. Я, по-перше, намагаюсь думати в термінах напівінтервалів, що поширено в програмуванні і дискретній математиці, тому я памʼятаю що b-a це кількість цілих точок в напівінтервалі [a,b) або, що для мене ще легше що цикл "for (i = a; i < b; ++i);" спрацює b-a разів, тут a і b цілі, звісно. А по-друге я тестую свій метод підрахунку для маленького пів-інтервала, скажимо [сьогодні,завтра) або навіть [cьогодні,сьогодні) і якщо відповідь мене задовільняє рахую вже для великого.
Про як навчитися рахувати в умі щось складне - не знаю, чув що є курси ментальної аріфметики де вчать швидко рахувати великі числа, але я не знаю які методіки вони використовують для навчання. Про цю історію з Гауссом не чув.
Я не думаю що є спеціальна назва для розділу який вивчає моделі календаря. Я би назвав це загальною математикою.
>>333980Це я видаляю і відправляю знову, коли оновиш сторінку то не побачиш інших повідомлень. А подвійний фрагмент тексту - це щось вакаба дивно себе поводить і це причина по який я видаляв. В мене в textarea подвійного фрагменту нема.
⋮⋮⋮
No.
333984
>>333975> Де всі українські мамчині цєннікі-нєгілісти-наукові-аметисти?Увечері прийдуть.
⋮⋮⋮
No.
333985
>>333983У тебе Mac?
заздрю шрифтам
⋮⋮⋮
No.
333988
OP
>>333985Так, не знав що шрифти інші на мак.
⋮⋮⋮
No.
333989
>>333988Вони не інші, але графічний рушій який обробляє їх там таки накручений (в кращу сторону). Дещо схожу гарну відмальовку шрифтів має дистрибутив Ubuntu.
⋮⋮⋮
No.
334005
>>333984Чекатиму з нетерпінням, хоча на час Великого Посту я з ними буду read-only,тролити чи дискутувати поки не буду.
⋮⋮⋮
No.
334007
Слухай, математику-козаче (це замість кун, бо я, звісно ж, не анімуфаг), а ще таке питання: я ж правильно розумію, що, на відміну від математики та комп'ютерних наук, у житті діє ТРОЇЧНА логіка: істина, хиба та невизначеність? Чи в математиці теж є невизначеність? В дискретній.
⋮⋮⋮
No.
334008
Ну от коли ми не можемо визначити істинність/хибність висловлювання. Наприклад, питання існування Ягве чи виникнення біологічного різномаїття саме шляхом біологічної макроеволюції протягом мільйонів років?
Ну, або вся історія, в принципі. Усі історичні науки, усі їх тези.
⋮⋮⋮
No.
334009
OP
>>334007Це філософське питання, бо не зрозуміло що таке "у житті діє".
Є конструктивна математика - це термін-парасолька для декількох підходів до побудови математики, але всі вони будуються на логічному фреймворку - конструктивній лозіці - в якої взагалі нема "значень" (насправді є, але там трохи складніше аніж якийсь скінчений набор "станів"), троїчна логіка і класична логіка це часний випадок конструктивної. Є певна кількість людей яки серйозно займаються/будують конструктивну математику замість класичної.
В класичній математиці невизначенності нема, кожне твердження має truth value, за модулем деяких метаматематичних феноменів які на математичній практиці ролі не грають.
>>334008З точки зору класичної математики істиностне значення все одно є, навіть якщо ми його не знаємо/не можемо визначити. Це +- наслідок закона виключення третього.
З точки зору конструктивної, твердження яке поки не довели/не спростували не має істиностного значення. Брауер такий погляд називав wait-and-see. Відповідно, в конструктивній математиці закона виключення третього нема.
⋮⋮⋮
No.
334011
>>334009То чи правильно я зрозумів, що на практиці в житті діють закони конструктивної математики, а не класичної? А класична це просто теоретичні моделі, які можуть бути і не зв'язані з реальністю взагалі?
⋮⋮⋮
No.
334013
OP
>>334011Можливо зрозумів і правильно, але це не те що я сказав. Я сказав що є "дві математики", яка з них є "законами що діють в житті" я не знаю. На мій погляд - це погане питання, бо в ньому зашите припущення, що життя це щось таке за ширмою чого стоять закони якогось логічного фреймворка, і треба просто зрозуміти якого самого, а мені здається що воно не так.
Але якщо поставиш мене до стінки і скажеш обрати одну, то я би сказав що конструктивна вона більш down-to-earth аніж класична.
Є до речі книжка від Catarina Novaes називається "The Dialogical Roots of Deduction: Historical, Cognitive, and Philosophical Perspectives", там вона приводить посилання на емпірічні дослідження які показують що в науці, юриспруденції і в биту логікою користуються доволі мало і в розсудах в відповідних сферах діяльності її постійно порушують.
⋮⋮⋮
No.
334015
>>334013Але ж ти повинен знати, що логік можна побудувати безліч різних, достатньо вигадати аксіоми та правила виведення, хоча щодо останніх, то навряд чи вигадають щось окрім modus ponens і modus tollens, а от з аксіомами — абсолютна свобода думки.
Тож я не розумію, що таке "порушують логіку", якщо тільки ти не маєш на увазі внутрішні протиріччя, тобто формальні логічні помилки в рамках якоїсь конкретної логіки. Протиріччя одних аксіом та виведень з них між однією логікою і іншою не є "порушенням логіки".
⋮⋮⋮
No.
334016
Блін, я пропустив кому перед "окрім". Крінж.
⋮⋮⋮
No.
334017
OP
>>334015Я мав на увазі порушення класичної логіки. Один з прикладів в книзі був про дослідження, в якому дослджували порушення монотонності в юриспруденції, тобто коли з A,B випливало D а з A,B,C вже не випливало D наприклад. Звісно можна вигадати немонотонні логіки.
⋮⋮⋮
No.
334021
Ти хочеш сказати, що якщо A,B --> D, то A,B,C --> D обов'язково? Але це ж не так. Дивись. Припустимо:
А = "йде сніг"
B = "холодно"
D = "зараз зима"
тоді як ліва частина стає такою:
А = "йде сніг"
B = "холодно"
С = "холодно && йде сніг не тільки зимою"
тоді D не випливає ж.
⋮⋮⋮
No.
334022
Може бути зима, а може бути типу "нова пора року, ще не описана наукою".
⋮⋮⋮
No.
334023
А що ти закінчував? Шеву, КПІ? Ступінь є?
⋮⋮⋮
No.
334024
Не знаю, я колись проходив тест на логіку з якимись уузками та шпунтіками, всі завдання розв'язав правильно.
⋮⋮⋮
No.
334026
OP
>>334021Так, (A & B → D) → (A & B & C → D) це пропозиційна тавтологія, можеш перебрати усі ноліки і одинички наприклад і побачити що обчислюється в 1.
Інший спосіб це пояснити: зайва гіпотеза це додатковий інструмент для виводу нових тверджень, вона не може зробити так, що тепер виводиться меньше тверджень.
Надання пропозиційним змінним якихось сенсів тут тільки заплутує. Одне з пояснень яке я можу дати на твій приклад, що з A, B, C випливає тавтологічна лож, а далі ex-falso-quodlibet (з лжи випливає що завгодно).
⋮⋮⋮
No.
334027
Так, це треба обмізкувати більше 5-ти хвилин. За 5 хвилин я щось не дуже зрозумів. Я не знаю, не пам'ятаю, що таке "тавтологічна лож". Ну, я пам'ятаю, що A --> A це тавтологія, але якісь складні тавтології я за 5 хвилин зараз зрозуміти ще не можу, ще не той рівень рухомого інтелекту, ще не фон Нейман.
Але я розумію, що таке (A & B → D) → (A & B & C → D)
А, я вже зрозумів, чому це тавтологія. Просто ти писав А, В а не А && B, а ще ж, окрім &&, є || та ^
⋮⋮⋮
No.
334028
>з A, B, C випливає тавтологічна лож, а далі ex-falso-quodlibet (з лжи випливає що завгодно)
А ось це я НЕ зрозумів.
⋮⋮⋮
No.
334029
Тобто ти хочеш сказати, що у моєму прикладі A && B && C завжди false?! O_O
⋮⋮⋮
No.
334030
Хєрово, що тут редагувати не можна, бо я якраз хотів тобі писати про друкарську помилку, але ти майже відразу відправив відкоригований допис.
⋮⋮⋮
No.
334031
OP
>>334028>Просто ти писав А, В а не А && BДовести що з A,B випливає D це те ж саме що довести A & B → D з пустого набору гіпотез. Це називається теорема про дедукцію.
>>334029Я не до кінця розумію твій приклад якщо бути чесним, і зробив мій best shot щоб пояснити щось тобі в твоїх термінах. Якщо з A,B випливає D, а C це заперечення того що з A,B випливає D, то C само по собі є false.
>>334030Так.
⋮⋮⋮
No.
334032
>>334031А, ось тепер зрозумів. А якщо типу С ніби буде "першим", тоді A, B --> D
є false.
⋮⋮⋮
No.
334033
Слухай, а ти повзкрокодил чи ти тут зависаєш 24/7?
⋮⋮⋮
No.
334034
Блядь... Все ж перед "чи" є кома...
⋮⋮⋮
No.
334035
В даному випадку.
⋮⋮⋮
No.
334036
OP
>>334033Я сиджу тільки в свому треді і часто тільки ближче до вихідних.
⋮⋮⋮
No.
334037
>>334036Так, це цілком закономірно, адже рівень твого рухомого інтелекту вище за середній по популяції, в той час як середній рівень рухомого інтелекту онанів з анонімних іміджборд нижчий, ніж в середньому по популяції.
⋮⋮⋮
No.
334038
Щоправда, саме на цій дошці я сидів дуже мало, тож в мене ще статистично не значущі дані.
В мене таке враження, що в українській мові частіше є кома, ніж немає. Ліл.
⋮⋮⋮
No.
334039
Просто тут виправданий нацизм по відношенню до нації "росіяни", а це в принципі свідчить про IQ < 70.
⋮⋮⋮
No.
334040
Ну, і нелібертаріанство, некосмополітизм, патріотизм. Це все свідчить про низький рівень інтелекту, а патріотизм ще й є психічним порушенням (надцінна ідея), кажу як майбутній психіатр.
⋮⋮⋮
No.
334041
OP
>>334039>>334040Малорос, іді нахуй.
⋮⋮⋮
No.
334042
>>334041Вибач, я забув, що мені ще днів 30 не можна висловлювати власні погляди та сперечатися з людьми.
⋮⋮⋮
No.
334043
Я намагався видалити, але прутень його знає, як.
Але до російського світу, Путіна та Росії я ставлюся погано. Я за США, Європу.
⋮⋮⋮
No.
334044
Був за Ізраїль до того моменту, як вони посадили людину за ЛАЙК.
⋮⋮⋮
No.
334045
Я от єврейський нацист, але мій нацизм теж виправданий та заснований на статистичних даних.
⋮⋮⋮
No.
334046
>>334044> Був за Ізраїль до того моментуТобто буквально сьогодні зранку перевзувся.
⋮⋮⋮
No.
334047
>>334046Ні, це ще давно було.
⋮⋮⋮
No.
334048
Мабуть, ці клінічні ідіоти при владі Ізраїлю вже не перший раз садять за лайк терористичних дописів. Ліл.
⋮⋮⋮
No.
334049
>>334047Ти з тих євреїв які проти існування держави Ізраїль?
⋮⋮⋮
No.
334050
А так-то садити не можна навіть за публічну пропаганду взаємних ядерних ударів, що знищать пів світу.
⋮⋮⋮
No.
334051
>>334049Я проти нелібертаріанської влади будь-де.
⋮⋮⋮
No.
334052
І проти патріотизму, бо він був благом і актуальним за часів Старого Заповіту, але після Христа — тільки космополітизм. Тобто так, усі церкви, окрім ранньохристиянської, трохи скотилися в цьому питанні.
⋮⋮⋮
No.
334053
Взагалі-то ось усе те, що я сказав про політику, є ірраціональним та засновано на моїх емоціях. Я сам же можу спростувати свої тези, але не хочу. Принаймні зараз.
Так пости я видалити не можу? А ОП може?
⋮⋮⋮
No.
334054
Ну але блядь, конвенція ООН: "Свобода слова може бути обмежена у цілях національної безпеки", НУ З ЯКОГО ПРУТНЯ, СУКА???? ЧОМУ, БЛЯДЬ?!
⋮⋮⋮
No.
334055
Слова це не дії, вони дуже рідко призводять до реальних дій, особливо сьогодні, коли слова не дотримується майже ніхто. Раніше слова цінували, відповідали за них більше, вони були більш вагомими.
⋮⋮⋮
No.
334056
А щодо політики, то я просто неупереджено аналізую зі свого боку, ЗМІ або не читаю, або фільтрую рос/укрпропаганду.
Так-то ви, східні слов'яни, обидва хуйні наробили ще з часів Київської Русі.
⋮⋮⋮
No.
334058
>>334056Інтерв'ю путіна передивись?
⋮⋮⋮
No.
334059
>>334058Не дивився такі, а що там?
⋮⋮⋮
No.
334060
Ну от дивіться, вони 8 років казали про "ущємленіє рускаязичних", а у вас тут в правилах "тільки українська мова". Вони 8 років втирали всім, що українці нацисти, а ваші онани стали такими, як я розумію, ще з 2014-го року, а 95% українців стали нацистами з 2022-го року. І те, що ваш нацизм виправданий, як і нацизм совка до німців-нацистів чи нацимз німців-нацистів до совка часів Другої світової війни, не робить його не-нацизмом.
Тобто ви ж самі підіграєте зараз роспропаганді.
⋮⋮⋮
No.
334061
>>334059Я теж. Тільки відголоски у вигляді мемів. Дід затирав за події відношення до яких вже ніхто не має. Бачу ти так само любитель "історії".
⋮⋮⋮
No.
334062
>>334061Ну так-то я г(лінь тверду г копіпастити)рунтуюся на тому, що вивчав у школі, тобто на українській історії.
⋮⋮⋮
No.
334063
>>334060Націоналізм присутній любій державі. З якого хуя мені вболівати чи думати за якихось підарів що там у них.
⋮⋮⋮
No.
334064
>>334063По-перше, ні, не будь-якій, по-друге, націоналізм та нацизм це різні речі.
Є три ступеня патологічності надцінної ідеї у порядку зростання процесуальних порушень роботи мозку:
1. Патріотизм
2. Націоналізм
3. Нацизм
⋮⋮⋮
No.
334065
На цю надцінну ідею хворіють наразі в основному тільки східні слов'яни.
⋮⋮⋮
No.
334066
У росіян НЕвиправданий нацизм по відношенню до українців, у українців ВИПРАВДАНИЙ нацизм по відношенню до росіян. Якось так.
⋮⋮⋮
No.
334067
Війна спричинила глибокі та, скоріш за все, незворотні психічні розлади у 80-95 відсотках населення цих двох країн.
⋮⋮⋮
No.
334068
>>334066У росіян фашизм, віник з хуйзнаскількох народностей які не дуже дружать між собою, їм перманентний пошук зовнішнього ворога потрібен щоб не перегризли один одного.
⋮⋮⋮
No.
334069
>>334068Може бути і фашизм, і нацизм одночасно. Фашизм це просто авторитарність влади, нацизм це приниження людей за національною ознакою.
⋮⋮⋮
No.
334070
>>334066І ще їх їбати не повинно що там у незалежній державі.
⋮⋮⋮
No.
334071
*дискримінація
⋮⋮⋮
No.
334073
В Україні фашизму немає зовсім, нацизм з 2014-го по 2022-й обмежувався лише усілякими кропивачами, /r/UkraineUA чи як там той смітник, булерами Таїсії Маламан та таке інше. Це було далеко не 95% населення України. А зараз вже 95%
⋮⋮⋮
No.
334074
Я інтерв'ю Путіна дивився лише у вигляді пупів ValorMainStream, ліл. Вони апрутненні.
⋮⋮⋮
No.
334075
>>334073М, навіть не знаю як так сталося. Можливо, коли приходять на твою землю, віджимають територію, відрізають голови на відео, гвалтують, каструють.
⋮⋮⋮
No.
334076
>>334075Так я ж казав, що нацизм виправданий, я українців за це не засуджую. Але нацизм є нацизм.
⋮⋮⋮
No.
334077
>>334067До 14 українцям, та навіть до 22 було ПОЇБАТИ що там у росіян, навіть на той Крим та Донбас було поїбати, ти навіть уявити не можеш собі як.
⋮⋮⋮
No.
334078
>>334077Так, але не всім було поїбати, був деякий відсоток вишивати-патріотів.
⋮⋮⋮
No.
334079
Після 2014-го він підвищився суттєво, але все одно порівняно зі 100% маловато.
⋮⋮⋮
No.
334080
>>334076Латвійський довбойобе, йди звідси нахуй вже.
⋮⋮⋮
No.
334081
>>334080Я єврей, проживаю в Києві все життя.
⋮⋮⋮
No.
334082
Можете в адміна запитати, він підтвердить, що в мене не VPN, а IP Київстару.
⋮⋮⋮
No.
334083
Не знаю, я в батька запитував, за ним усі українці корінні, за матір'ю — євреї.
Вважаю себе євреєм.
⋮⋮⋮
No.
334084
Мій батько теж лібертаріанець, але хворіє на патріотизм та вважає, що лайк терористів це "падстрєкательство к дєйствіям" і тому теж дія.
⋮⋮⋮
No.
334085
Слова та тим паче лайки не є діями у, скажімо так, кримінальній площині. Точніше, не повинні такими бути. З точки зору фізики взагалі і слова, і лайки є діями, бо це якийсь рух, звуки і так далі.
Але лайки не можуть ні до чого призвести. І не треба нести хуйню про те, що вони типу задають тренд, і чим більше лайків, тим більше людей схиляться до тероризму.
⋮⋮⋮
No.
334086
*вподобайки
⋮⋮⋮
No.
334087
Добре, оскільки ОП тупа вишивата з рівнем інтелекту нижче за середній (я помилився, адже він назвав прозахідну людину малоросом), і він мені перестав відповідати, мене тут більше ніщо не цікавить.
⋮⋮⋮
No.
334088
>>334060А ти знатний демагог, бачу.
⋮⋮⋮
No.
334089
>>334084Ти єврейські ритуали або свята, певно, зневажаєш.
⋮⋮⋮
No.
334090
>>334088Батько теж мені так казав, причому років 10 тому.
>>334089Не те щоб зневажаю, я поважаю усі релігії, але сам я православний християнин.
⋮⋮⋮
No.
334091
>>334089Ти маєш на увазі, що почався шабат, а я несу в цьому треді те, що несу?
⋮⋮⋮
No.
334092
Українська пропаганда дуже якісна ще з 2014-го року, набагато якісніша, ніж російська, у яку можуть повірити тільки такі дегенерати, як двачеблядки. Сказав би "і нижче", але куди вже нижче-то...
А от українська чомусь чудова та ефективна. Скоріш за все. працювали західні технологи.
⋮⋮⋮
No.
334093
Якщо ви мене запитаєте, чому при таких розкладах 80% росіян підтримує Путіна, я вам скажу, що тут справа не у пропаганді, а у тому, що вони, власне, за вузький мір самі по собі. Якби пропаганди не було зовсім, вони б теж такими були. Це все від патріотизму. Більшість росіян психічно хворі ще з часів, не знаю... Івана Грозного? В якого взагалі параноїдна шизофренія була...
⋮⋮⋮
No.
334095
Якщо що, то існує помірний патріотизм, який не виходить за рамки психічної норми. Наприклад, на Заході чи в Китаї. А у східних слов'ян він за рамки психічної норми виходить. У росіян так було завжди, у українців з 2022-го року. У деяких, повторюся, ще з 2014-го.
⋮⋮⋮
No.
334096
Так, мені казали, що ввечері прийде моя їжа. Щось я поки що її не бачу.
⋮⋮⋮
No.
334098
Добре, піду все ж в Stardew Valley, не прощаюся, але повернуся сюди в уже зовсім іншій якості.
Взагалі дуже добре було б, щоб мені пермач виписали тут, бо я якраз без VPN (він, сука, глючить, хоча мобільна версія працює чудово), VPN в найближчому майбутньому вмикати не планую. Це забезпечить мені неможливість вас читати та/або дописувати.
Прошу мене зарепортити. Зараз я сам спробую себе зарепортити. Думаю, можна інтерпретувати, що я тут порушив правила, і що мої слова про нацизм це "проросійський наратив".
⋮⋮⋮
No.
334121
.
⋮⋮⋮
No.
334957
>>333955>точна формула для числа циклів випливає з гіпотези на https://oeis.org/A327551Не бачу щоб в
https://oeis.org/A327551 була якась гіпотеза.
>Вирішуємо відкриті гіпотези прямо на Кропивачі! Можете додати цей розсуд на OEIS і написати в дужках що це безос з Кропивача вигадавТам анонімно нічого дописувати не можна:
https://oeis.org/Submit.htmlА взагалі, якшо брати випадкову пермутацію з n елементів (тобто беремо 0 1 2 3 4 5 6 ... n-1 і випадково перемішуємо) то яка буде в середньому кількість транспозицій і кількість циклів?
⋮⋮⋮
No.
334960
>>334957Пишу з іншого місця, так що плашки ОПа не буде скоріше за все, бо здається "ОПовість" в куках не зберігається, а могли би, це не складно.
>Не бачу щоб в https://oeis.org/A327551 була якась гіпотеза.Там де написано: "FORMULA: Conjecture: a(n) = A006694(n-1) + 2 = A081844(n-1) + 1. - N. J. A. Sloane, Sep 16 2019", слово "conjecture" перекладається як "гіпотеза".
>Там анонімно нічого дописувати не можна: https://oeis.org/Submit.htmlЗвісно, мав на увазі дописати не анонімно, але згадати що аргумент був на анонімному формуі.
>А взагалі, якшо брати випадкову пермутацію з n елементів (тобто беремо 0 1 2 3 4 5 6 ... n-1 і випадково перемішуємо) то яка буде в середньому кількість транспозицій і кількість циклів?Це класична задача, дуже відома. Я би навіть тобі порадив подумати над нею самотужки, відповідь під спойлером нижче. Щоб вирішити її виріши спершу простішу підзадачу: скільки в середньому нерухомих точок (циклів довжини 1) в пермутації довжини n? А скільки в середньому циклів довжини 2 в пермутації довжини n?
середня кількість циклів в пермутації довжини n = 1 + 1/2 + 1/3 + ... + 1/n
⋮⋮⋮
No.
334973
>>334970Це теж класична задача. Нехай твоя основа системи числення це b, зафіксуємо це число. Ти хочеш порахувати кількість строк довжини n над алфовітом {0,...,b-1} які в сумі дають k (і потім поділити на b^n щоб отримати відсоток, але будемо це ігнорувати, бо це не суттєво). На курсах комбінаторики це зазвичай формулюють як "порахувати кількість впорядкованих розбиттів натурального числа k на n невідʼємних натуральних чисел кожне з яких меньше за b".
Нехай це є число A(n,k). На останнє місце ти можеш поставити будь-яке число від 0 до b-1, це дає рекурентність
A(n,k) = A(n-1,k) + A (n-1,k-1) + A(n-1,k-2) + ... + A(n-1,k-b+1).
Для b=3 це дає триноміальний коефіціент (ти вгадав назву, хоча триноміальним коефіціентом іноді називається дещо інше, так що назва неоднозначна)
https://oeis.org/A027907https://mathworld.wolfram.com/TrinomialTriangle.htmlдля вищих b це дає приклади b-номіальних коефіціентів відповідно.
⋮⋮⋮
No.
334992
>>334970>А є якесь узагальнення трикутника Паскаля, де розглядається не послідовність в двійкової системи числення, а в будь-якої?Окрім звичайної тривимірної сітки координат, можливо уявити n-вимірний простір з відповідними показниками.
Можливо також скласти піраміду Паскаля (
https://www.wikiwand.com/en/Pascal's_pyramid) або діаграму Гессе (
https://www.wikiwand.com/uk/Діаграма_Гассе).
⋮⋮⋮
No.
335041
>>335039* мав на увазі Ґьоделя, звісно
⋮⋮⋮
No.
335042
Будь ласка, перед тим як ставити питання, спробуйте знайти відповідь самостійно. Але за запитання дякую, бо самому буває цікаво. Та й таке.
>>335039"Перша теорема стверджує, що, якщо формальна арифметика є несуперечливою, то в ній існує невивідна і неспростовна формула.
Друга теорема стверджує, що якщо формальна арифметика є несуперечливою, то в ній є невивідною деяка формула, яка змістовно стверджує несуперечливість цієї арифметики."
https://www.wikiwand.com/uk/Теореми_Геделя_про_неповноту>>335040"Математичний об'єкт Математичний об'єкт—це абстрактний об'єкт, який виникає в математиці. Це поняття вивчається у філософії математики.
У математичній практиці об'єктом є все, що було (або могло б бути) формально визначеним, і з допомогою чого можна робити дедуктивні міркування та математичні доведення."
https://www.wikiwand.com/uk/Математичний_об'єктЯкщо є конкретніші питання—будь ласка.
⋮⋮⋮
No.
335045
>>335042>>Математичний об'єкт—це абстрактний об'єкт, який виникає в математиці
>>Якщо є конкретніші питання—будь ласка.
Чи коректно буде сказати, що математика це просто абстрактна вигадка, підлаштована нами під
навколишній світ.
⋮⋮⋮
No.
335047
Чи можна логіку звести до математики(або навпаки)?
⋮⋮⋮
No.
335052
>>335045Математика корисна приблизно так само, як і будь-яка інша мова, адже дає визначення речам та явищам в об'єктивній реальності, а також, за допомогою додаткових знань фізики, хімії та інших наук, дає змогу
робити прогнози майбутніх подій.
"Видатний математик Фелікс Кляйн писав у своїй інтимній історії математики дев’ятнадцятого століття, що «математика—це не просто питання розуміння, але, по суті, питання уяви»."
"Аристотель ["Теорія ступенів буття 1993"] характеризував уяву як «те, на підставі чого ми кажемо,, що образ спадає нам на думку», і, здається, це був основний функціональний погляд на уяву в
античність: розумова здатність, здатна сприймати та відтворювати презентації почуттів.
Арістотель також стверджував, що уява також може створювати образи, коли чуттєве сприйняття не відбувається місце, як це відбувається уві сні, і, отже, здатний доповнювати думку невидимими образами, які, ймовірно, близькі до того, що бачили раніше.
Це важливе погодження, оскільки Аристотель, здається, вважає, що будь-яке мислення, навіть спекулятивне, вимагає образів."
PhilPapers - "Уява в математиці":
https://philpapers.org/archive/ARAIIM.pdf>>335047Логіка та математика пов'язані приблизно так само, як географія та біологія. Тому ні.
"Логіка та математика — це дві споріднені дисципліни, тому що логіка—це дуже загальна теорія логічного висновку та міркування, а логічний висновок і міркування відіграють дуже важливу роль у математиці, тому що як математики ми доводимо теореми, а для цього нам потрібно використовувати логічні принципи та логічні умовиводи."
Денис Бонне - "Логіка і математика":
https://serious-science.org/logic-and-mathematics-7243
⋮⋮⋮
No.
335062
>>335039Теорема Гьоделя каже що завжди будуть теореми які ми не здатні довести або спростувати, наскільки би сильні формальні системи з аксіом-теорем-доведень би не будували. Є дві крайні точки зору на це світоглядно дивитись і купа проміжних.
1) Монізм/платонізм: дивитись на це як на фундаментальну слабкість наших інструментів - синтаксичних фреймворків або систем виводу, "істина тільки одна, але не вистачає інструментів до неї добратись".
2) Плюралізм/формалізм: дивитись на це як на cвідчення того що істина насправді відносна, бо якщо щось неможливо довести або спростувати, то обидві точкі зору - вірити в це або ні - є рівнозначними.
Я слиьно ближче до першої точки зору. Але за моїми відчуттями більшість математиків напевно займають або "атеїстичну" позицію (це не важливе / не цікаве питання), або якусь проміжну - скажимо що арифметична істина абсолютна, але теоретико-множинна істина відносна.
>>335040Не знаю, це одне з вічних метафізичних питань про які купу текстів пишуть.
Я думаю що скоріш так чим ні. Принаймні мене легко уявити альтернативний світ в якому існує елементарна математика і не існує нічого глибше. І те що наш світ не такий, для мене напевно щось значить.
>>335047Сильно залежить що значит "звести" і що ти розумієш під логікою і математикою. Я би відповів "так" на обидві питання, в тому сенсі що математика (за модулем гьоделевських феноменів, які не супер важливі на практиці) вже зведена до синтаксичної логічної формальної гри, де ти з аксіом по заданим правилам будуєш теореми. Це так працюють пруф-асістанти - програми які допомогають веріфікувати математичні аргументи. Можна вважати це "зведенням математики до логіки". В іншу сторону: вивчення формальних мов і їх семантик це розділ математикі - про це математична логіка.
Якщо логіку ти розумієш більш широко аніж "математична логіка", а, скажимо, вважаєш теорію аргументації або німецький ідеалізм (Гегель, Кант) також логікою, то скоріш не зводиться.
ОП
⋮⋮⋮
No.
335065
Порадьте scientific calculator
У кого є, хто яким користується?
Для перевірки усіляких гіпотез я так розумію краще графічний з можливістю оперування масивами та таке інше.
Чи можливо софтверні додатки, якими користуєтесь.
⋮⋮⋮
No.
335069
>>335065Wolfram Alpha і Desmos для чогось простого і швидкого (порахувати ряд, інтеграл, намалювати графік). Для чогось складніше використовую CAS: Wolfram Mathematica або SageMath.
⋮⋮⋮
No.
335071
>>335070Так, окрім Wolfram Mathematica, повний пакет якої за грощі, але безкоштовна версія, з обмеженими обчислювальними потужностями, є на Wolfram Cloud
https://www.wolframcloud.com/ я користуюсь цією версією і мені вистачає.
⋮⋮⋮
No.
335079
Для мене найбільшим відкриттям було те що теорія відносності і вірогідності це цілком різні речі. І це на 4му курсі вишу..
⋮⋮⋮
No.
335190
>>335069Щось ця вольфрамальфа не осилює зрозуміти, що формула 2(abs(asin(sin(((2x+pi)/4))))-pi/4)-asin(sin(x)) це теж саме, що 0
https://www.wolframalpha.com/input?i=2(abs(asin(sin(((2x%2Bpi)%2F4))))-pi%2F4)-asin(sin(x))
Які CAS можуть довести, що 2(abs(asin(sin(((2x+pi)/4))))-pi/4) дорівнює asin(sin(x)) ?
⋮⋮⋮
No.
335193
>>335190Уважніше з операцією поділу. Якщо 2/1+1=3, то 2/(1+1)=1. Те саме стосується зведення у ступінь: 2^(1+1)=4, але 2^1+1=3.
⋮⋮⋮
No.
335194
OP
>>335190Якщо трохи спростити задачу, то доводить. Але звісно це набагато простіше, бо на інтервалі -pi/2 < x < pi/2 arcsin(sin(x))=x. Щодо твого питання - я не знаю, бо не користуюсь іншими CAS. Якщо тобі цікаво то я би порадив ще спробувати Maple, бо це прямий конкурент вольфраму в символьних обчисленнях. В загальному випадку спростити вираз такого типу це алгорітмічно неразрешима задача відома як проблема констант
https://en.wikipedia.org/wiki/Constant_problem>>335193В нього все правильно написано.
⋮⋮⋮
No.
335198
OP
Не можу посилання залишити через те що зʼїдає зірочки. Але той самий код можна запустити і на альфі.
⋮⋮⋮
No.
335200
OP
>>335199Якщо пишеш щось в строку що не є кодом на wolfram language, то воно намагається здогадатися що ти мав на увазі і в нього не завжди виходить. Якщо пишеш на wolfram language то неоднозначності нема, бо це формальна мова.
⋮⋮⋮
No.
335202
2 + 2 = 2
Спростуйте.
⋮⋮⋮
No.
335203
>>3352021+1+1+1=1×(1+1+1+1)^1
⋮⋮⋮
No.
335204
OP
>>335201Ще простіше: використовувати зірочку (*) для множення.
⋮⋮⋮
No.
335207
OP
Це бамп-ліміт, я перестворю тред але вже десь наступного тижня, або через один-два.
⋮⋮⋮
No.
335208
>>335203Ні. 2 плюс 2 це
два рази по два. Тому відповіь 2 релевантна.
⋮⋮⋮
No.
335210
>>335207Треба виразити це у послідовностях і перевірити теорією ймовірностей.
Ймовірність події А наступного тижня й ймовірність події B через один-два.
⋮⋮⋮
No.
335211
>>335194А якими алгебраїчними/тригонометричними перетвореннями ти б вручну доводив, що 2(abs(asin(sin((2x+pi)/4)))-pi/4)=asin(sin(x)) ? Можеш це довести?
⋮⋮⋮
No.
335212
>>335208Так, погоджуюсь. Якщо брати до уваги
>>335209, то виходить, що 2x+2x=2y, де y—це "рази", "процеси" або "цикли", а "x"—умовні одиниці, наприклад "яблука", як на малюнку.
⋮⋮⋮
No.
335213
Ця нитка беззаперечно довела, що маиематика це не точна та гуманітарна наука.
⋮⋮⋮
No.
335220
OP
>>3352112(abs(asin(sin((2x+pi)/4)))-pi/4) - asin(sin(x) = - pi/2 - asin sin x + 2 | asin sin (x/2 + pi/4)|
Розглянемо два випадки
I) x/2 + pi/4 = pi k + y; k ціле; y належить [0,pi/2]
II) x/2 + pi/4 = pi/2 + pi k + y; k ціле; y належить (0,pi/2)
Випадок I)
x = 2 pi k + 2y - pi/2;
| asin sin (x/2 + pi/4)| = y;
asin sin x = asin sin (2 pi k + 2y - pi/2) = asin sin (2y - pi/2) = 2y - pi/2; (тому що 2y - pi/2 належить [-pi/2,pi/2])
тому маємо тотожність
- pi/2 - asin sin x + 2 | asin sin (x/2 + pi/4)| = - pi /2 - (2y - pi/2) + 2 y = 0
Випадок II)
x = 2 pi k + 2y + pi/2;
| asin sin (x/2 + pi/4)| = pi/2 - y;
asin sin x = asin sin (2 pi k + 2y + pi/2) = asin sin (2y + pi/2) = pi/2-2y; (тому що 2y + pi/2 належить (pi/2,3pi/2) )
тому маємо тотожність
- pi/2 - asin sin x + 2 | asin sin (x/2 + pi/4)| = - pi /2 -(pi/2 - 2y) + (pi - 2y) = 0
⋮⋮⋮
No.
335221
>>335220Єбать мій хуй. Очі розбігаються. А нашо воно?
⋮⋮⋮
No.
335222
OP
>>335221Це було прикладом безоса вище (
>>335190 ) відносно простого виразу який не здатен порахувати компʼютер.
⋮⋮⋮
No.
335224
>>335222Ну це дивлячись який. Мова ж не йде про нейромережі/АІ